ancestral_state_reconstruction.py – Runs ancestral state reconstruction given a tree and trait table¶
Description:
Provides a common interface for running various ancenstral state reconstruction methods (e.g. ACE, BayesTraits, etc.).
Usage: ancestral_state_reconstruction.py [options]
Input Arguments:
Note
[REQUIRED]
- -t, --input_tree_fp
- The tree to use for ASR
- -i, --input_trait_table_fp
- The trait table to use for ASR
[OPTIONAL]
- -m, --asr_method
- Method for ancestral state reconstruction. Valid choices are: ace_ml, ace_reml, ace_pic, wagner [default: ace_pic]
- -o, --output_fp
- Output trait table [default:asr_counts.tab]
- -c, --output_ci_fp
- Output table containing 95% confidence intervals, loglik, and brownian motion parameters for each asr prediction [default:asr_ci.tab]
- -p, --parallel
- Allow parallelization of asr
- -j, --parallel_method
- Method for parallelizaation. Valid choices are: sge, torque, multithreaded [default: sge]
- -n, --num_jobs
- Number of jobs to be submitted (if –parallel). [default: 100]
- -d, --debug
- To aid with debugging; get the command that the app controller is going to run
Output:
A table containing trait information for internal nodes of the tree.
Example 1:
Provide a tree file and trait table file:
ancestral_state_reconstruction.py -i trait_table.tab -t pruned_tree.newick -o asr_counts.tab -c asr_ci.tab