parallel_predict_traits.py – Runs predict_traits.py in parallel

Description:

Usage: parallel_predict_traits.py [options]

Input Arguments:

Note

[REQUIRED]

-i, --observed_trait_table
The input trait table describing directly observed traits (e.g. sequenced genomes) in tab-delimited format
-t, --tree
The full reference tree, in Newick format
-o, --output_trait_table
The output filepath for trait predictions

[OPTIONAL]

-a, --calculate_accuracy_metrics
If specified, calculate accuracy metrics (i.e. how accurate does PICRUSt expect its predictions to be?) and add to output file [default: False]
-r, --reconstructed_trait_table
The input trait table describing reconstructed traits (from ancestral_state_reconstruction.py) in tab-delimited format [default: None]
--output_precalc_file_in_biom
Instead of outputting the precalculated file in tab-delimited format (with otu ids as row ids and traits as columns) output the data in biom format (with otu as SampleIds and traits as ObservationIds) [default: False]
-c, --reconstruction_confidence
The input trait table describing confidence intervals for reconstructed traits (from ancestral_state_reconstruction.py) in tab-delimited format [default: None]
-j, --parallel_method
Method for parallelizaation. Valid choices are: sge, torque, multithreaded [default: multithreaded]
-n, --num_jobs
Number of jobs to be submitted. [default: 2]
-d, --delay
Number of seconds to pause between launching each job [default: 0]
--already_calculated
Precalculated file that is missing some otu predictions. Output will contain predictions from this file and the new predictions as well. [default: None]

Output:

Basic

parallel_predict_traits.py -i trait_table.tab -t reference_tree.newick -r asr_counts.tab -c asr_ci.tab -o predict_traits.tab